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Multi-anticipative car-following model
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Abstract. The microscopic car-following model by Bando et al. [1–4] is extended by incorporating multi-
vehicle interactions. It is shown that the reaction to more than one vehicle ahead leads to a stabilization
of the dynamical behavior, i.e. the stable region increases. Still the fundamental macroscopic properties of
traffic, free flow and congested flow, are described. More important, due to the multi-anticipative driving
behavior driving in narrow platoons is forced such that a third fundamental property of traffic flow, the
so-called synchronized flow [5], is modeled as well.

PACS. 64.60.Fr Equilibrium properties near critical points, critical exponents – 05.70.Fh Phase transitions:
general aspects – 47.20.Ky Nonlinearity (including bifurcation theory)

1 Introduction

Over the last years scientists have shown a growing in-
terest in traffic theory and contributions to the under-
standing of these complex phenomena are mainly put
forward along three different lines. The macroscopic ap-
proach treats vehicular traffic as a fluid and Witham [6]
was one of the first who proposed a simple hydrodynamic
model. Meanwhile several higher order models are advo-
cated [7,8]. A second, kinetic approach has been initi-
ated by Prigogine and Herman [9]. This mesoscopic ap-
proach has recently been resumed [10,11] and has led to
important improvements and a thorough understanding
of hydrodynamic modeling. The third microscopic branch
separates in cellular automata models [12–14] and car-
following models [1,15,16]. Here every vehicle is treated
individually, and due to the growing computational power
cellular automata models become more and more popular.
In most of the models treated so far correlations between
vehicles have been neglected, but from everyday experi-
ence one knows that drivers often observe two or more
nearest vehicles ahead. This leads to multi-vehicle inter-
actions with consequences on the phase separation and
the fundamental diagram. The present paper serves to in-
vestigate multi-vehicle interactions in the case of a car-
following model recently proposed by Bando et al. [1]. We
show that the reaction to more than one vehicle ahead
leads to a stabilization of the dynamical behavior, i.e. the
stable region increases. Still the fundamental macroscopic
properties of traffic, free flow and congested flow, are de-
scribed. More important, due to the multi-anticipative
driving behavior driving in platoons is forced such that
a third fundamental property of traffic flow, the so-called
synchronized flow [5], is modeled as well.
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In Section 2 we introduce an extended optimal veloc-
ity model. This is followed by a linear stability analysis
in Section 3. In Section 4 the characteristic properties of
the proposed model are numerically investigated in terms
of hysteresis loops, flux-density-relations and the speed
of the fronts of a congested flow, such that a deeper un-
derstanding of the stabilizing effect of the multi-vehicle
interactions will be gained.

2 Multi-following model

We extend the optimal velocity model by Bando et al. [1]
to multi-vehicle interactions in the following way.

We suppose that drivers do not only react on the dy-
namics of their leading vehicle but also take into consid-
eration up to m cars ahead with a sensitivity aj . The
dynamical equations then read1:

ẍn =
m∑
j=1

aj

{
V

(
xn+j − xn

j

)
− ẋn

}
,

n = 1, 2, . . . , N. (1)

N is the total number of vehicles and xn is the position of
the nth vehicle. For m = 1 we recover the original optimal
velocity model.

For V (.) we use the same sigmuidal function as pro-
posed by [1], namely

V (x) = tanh(x− h) + tanh(h) with h = constant. (2)

1 The car-following model by Gazis et al. [15] has also been
extended in an additive way by Bexelius [17].
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Furthermore, we introduce overall sensitivity

a =
m∑
j=1

aj . (3)

The sensitivity ratios are assumed to satisfy

aj/a1 ≤ 1, j = 2, 3, . . . ,m, (4)

such that the interaction with the vehicle directly ahead
is weighted the most. For simplicity, we impose periodic
boundary conditions, so the vehicles travel on a circuit
with length L.

3 Linear stability

It is obvious that the steady state solution of equation (1)
is identical to the original model (m = 1), namely

x0
n = bn+ ct (5)

with

b = L/N, c = V (b), (6)

meaning that the vehicles are equally spaced with a dis-
tance b and move forward with a velocity c. Let yn be a
small deviation from the steady state position of the nth
car, i.e.

xn = x0
n + yn , |yn| � 1. (7)

Linearization of equation (1) and neglection of higher or-
der terms in yn yields

ÿn =
m∑
j=1

aj

{
f
yn+j − yn

j
− ẏn

}
, (8)

where f is the derivative of V with respect to its argument,
i.e. f = V ′(b).

Expanding yn in Fourier-modes

yk(n, t) = exp{iαkn+ zt}, (9)

αk =
2π

N
k , k = 0, 1, 2, . . . , N − 1. (10)

We obtain

z2 + az − f
m∑
j=1

aj
ejiαk − 1

j
= 0. (11)

After inserting in equation (11) z = λ + iω, we find for
the real part

λ2 − ω2 + aλ+ fσc = 0 (12)

and for the imaginary part

2λω + aω − fσs = 0, (13)
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Fig. 1. The critical curves separating stable (λ < 0 – left) and
unstable (λ > 0 – right) region in the (f/a, α) polar coordinate
plane. The solid line is m = 1, the dashed line is m = 2 with
sensitivity ratio a2/a1 = 1/2. The case m = 3 is represented
by the dash-dotted line with a2/a1 = 2/3 and a3/a1 = 1/3.

where the abbreviations

σc =
m∑
j=1

aj
1− cos(αkj)

j
and σs =

m∑
j=1

aj
sin(αkj)

j

have been used. Note that σc ≥ 0 for all αk. Equa-
tions (12–13), together with Hurwitz’s criteria then leads
to the following linear stability condition (λ < 0):

f <
a2σc

(σs)
2 · (14)

Case m = 1

For m = 1 this reduces to the condition found in [1],
namely:

f <
a

2 cos2(αk/2)
· (15)

Case m = 2

For m = 2 equation (14) reads

f <
a2 [a1 + a2(1 + cosαk)] sec2(αk/2)

2(a1 + a2 cosαk)2
(16)

and the critical curve separating stable and unstable re-
gion is then defined by equality in equation (16). In Fig-
ure 1 the stability criteria (16) is shown in a (f/a, α) polar
coordinate plane. The solid line depicts the case m = 1,
whereas the case m = 2 with sensitivity ratio a2/a1 = 0.5
is given by the dashed line.
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Fig. 2. f/a for the zeroth mode αk = 0 as a function of the
sensitivity ratios a2/a1 and a3/a1.

Case m = 3

For m = 3 equation (14) reads

f <
a2
[
a1(1− cosαk) + a2

2 (1− cos 2αk) + a3
3 (1− cos 3αk)

](
a1 sinαk + a2

2
sin 2αk + a3

3
sin 3αk

)2
(17)

The dash-dotted line in Figure 1 shows the correspond-
ing critical curve with sensitivity ratios a2/a1 = 2/3 and
a3/a1 = 1/3.

Obviously, the most unstable mode exists near the neu-
tral mode (see Fig. 1). Thus, it is sufficient to concentrate
on the limit αk → 0, where equation (14) simplifies to

f <
1

2

m∑
j=1

jaj . (18)

f/a is shown in Figure 2 as a2/a1 and a3/a1 vary between
zero and one. From this we conclude that (i) with a grow-
ing number of interacting vehicles and (ii) with a grow-
ing sensitivity ratio aj/a1 the region of stability increases.
In Figure 3 the increase of the region of stability is de-
picted for the case, when the two nearest vehicles ahead
are observed and the sensitivity ratio a2/a1 grows from
zero to one. The stable and the unstable region are sep-
arated by the marginal stability line, where the solid line
corresponds to the sensitivity ratio a2/a1 = 0, the dashed
line to a2/a1 = 1/3, the dash-dotted line to a2/a1 = 2/3,
and the dotted line to a2/a1 = 1.

4 Numerical simulation of traffic flow

Numerical simulations allow us to investigate whether the
result of the linear stability analysis, i.e. the stabilizing
effect of multi-vehicle interactions, also holds for the non-
linear model. Therefore, and in order to achieve physically
meaningful results as well as to enhance the possibility
to compare the results of our numerical simulations with
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Fig. 3. Marginal stability line as function of the homogeneous
spacing b for m = 2. The solid line corresponds to the sensitiv-
ity ratio a2/a1 = 0, the dashed line to a2/a1 = 1/3, the dash-
dotted line to a2/a1 = 2/3, and the dotted line to a2/a1 = 1.

real traffic data, the function V is modified according to
Herrmann [4] to:

V (x) = v0((1 + exp(1000/(7.35x)− 10/2.1))−1

− 5.34× 10−9). (19)

In the following, the nonlinear effects of the multi-vehicle
interactions on the stability of traffic flow are numeri-
cally investigated in terms of hysteresis loops, flux-density-
relations and the speed of the fronts of a congested flow,
such that a deeper understanding of the stabilizing effect
of the multi-vehicle interactions will be gained. Besides
the increase of the stable region, the multi-anticipative
driving behavior leads to the formation of platoons such
that synchronized flow becomes possible. Still, the com-
mon fundamental properties of traffic flow, free flow and
congested flow, are modeled.

4.1 Shrinking hysteresis

For the case m = 1 it is well-known that for a medium ho-
mogeneous density ρ = 1/∆x and after initialization with
a small disturbance the almost homogeneous flow devel-
ops into a congested flow [1–3]. Hence, after initialization
with a small disturbance the proposed model (Eq. (1))
leads for m = 1, N = 300, L = 10 km and a = 0.9 /s
to a congested flow. In the ∆x-ẋ-plane the profile of the
congested flow is given by a hysteresis-loop as shown in
Figure 4. Numerical simulation reveals that for m = 2,
when the overall sensitivity a (Eq. (3)) stays constant,
the size of the hysteresis loop shrinks simultaneously with
an increasing sensitivity ratio aj/a1. Similarly, the size of
the hysteresis loop shrinks with a growing number m of
interacting vehicles. In Figure 4 the hysteresis loops are
shown for the sensitivity ratios a2/a1 = 0 (or equivalently
m = 1), a2/a1 = 1/3, a2/a1 = 2/3 and a2/a1 = 1, where
the order goes from the outside to the inside.
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Table 1. Characteristic properties for m = 1, m = 2 (a2/a1 = 1/2), and m = 3 (a2/a1 = 1/2, a3/a1 = 1/4).

m ρcr [cars/km] q [cars/h] v [km/h] ∆ρcr [%] ∆q [%] ∆v [%] vg [km/h]

1 19.0 1722 90.63 0.0 0.0 −0.0 −11.1

2 21.8 1885 86.50 14.74 9.47 −4.56 −23.6

3 23.6 1963 83.18 24.21 14.0 −8.2 −32.7
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Fig. 4. Hysteresis loops of the congested flow in the ∆x-ẋ-
plane form = 2. While the sensitivity ratio grows from a2/a1 =
0 to a2/a1 = 1/3, a2/a1 = 2/3 and a2/a1 = 1, the order goes
from the outside to the inside.

4.2 Flux-density-relation

Observing the flux-density-relation gives further insights
about the characteristics of the multi-anticipative car-
following model. Figure 5 shows that for free flow, a homo-
geneous flow is realized regardless of m and regardless of
the sensitivity ratios aj/a1 (linearly increasing part of the
thick line). However, since the critical value of the den-
sity ρcr grows with increasing anticipation (see Fig. 6),
also the maximum flow that is stable, e.g. the outflow
from a congested flow, increases. In Figure 5 the flux-
density-relations for a congested flow with m = 1, m = 2
(a2/a1 = 1/2), and m = 3 (a2/a1 = 1/2, a3/a1 = 1/4)
are shown. Analogously to the shrinking hysteresis, the
area covered by the flux-density-relation decreases with
growing anticipation. This leads to two main effects (see
Tab. 1). On the one hand, the velocity of the backwards
moving stop-and-go-wave vg depends on m and the sensi-
tivity ratios aj/a1, e.g. it decreases from vg = −11.1 km/h
for m = 1 to vg = −32.7 km/h for m = 3, a2/a1 = 1/2,
and a3/a1 = 1/4. This fact goes conform with empirical
data [18]. On the other hand, the strong increase of the
critical density ρcr by 24%, is connected with a small de-
crease of the speed by 8% and a small increase of the flux
by 14%, such that driving in narrow platoons is forced.
Consequently, the increase of the stable region due to
an enlarged anticipation can explain a third fundamental
property of traffic flow recently investigated and named
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Fig. 5. Flux-density-relations for the homogeneous flow (thick
line) and for congested flow with m = 1, m = 2 (a2/a1 = 1/2),
and m = 3 (a2/a1 = 1/2, a3/a1 = 1/4) (the order goes from
the outside to the inside).
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Fig. 6. Critical density ρcr for the zeroth mode αk = 0 as a
function of the sensitivity ratios a2/a1 and a3/a1.

synchronized flow [5]. Accordingly, besides the transition
from free flow to congested flow a transition from free
flow to synchronized flow can exist, provided the drivers
observe more than one car ahead.

5 Conclusion

In order to capture correlations between vehicles the mi-
croscopic car-following model by Bando et al. [1–4] has
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been extended by incorporating multi-vehicle interactions.
As a consequence of the multi-anticipative driving behav-
ior, the size of the stable region increased. Besides the
common fundamental properties of traffic flow, free flow
and congested flow, the model was shown to reproduce a
third fundamental property of traffic flow, recently inves-
tigated by Kerner and Rehborn and named synchronized
flow [5]. Therefore, the model seems to be appropriate to
model and predict traffic flow on highways.

References

1. M. Bando et al., Phys. Rev. E 52, 1035 (1995).
2. M. Bando et al., J. Phys. I France 5, 1389 (1995).
3. Y. Sugiyama, Workshop Traff. Dyn. Gran. Flow, 137-149

(1995).
4. M. Herrmann, B. Kerner, Physica A (submitted, 1997).

5. B.S. Kerner, H. Rehborn, Phys. Rev. Lett. 79, 4030 (1997).
6. M.J. Lighthill, G.B. Whitham, P. R. Soc. Lond. A 229,

317 (1955); G.B. Whitham, Linear and nonlinear waves
(Wiley, New York, 1974).
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